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ABSTRACT

29656

The dynamic response of thin elastic conical shells subject to blast
load is formulated according to membrane theory. The solutions are obtained

by the technique of separation of variables with Poisson's ratio neglected.
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NOMENCLATURE

All symbols are defined in the text where they first appear, and some

of the major symbols are listed below:

as bn Generalized Fourier coefficients
E Modulus of elasticity

exx’ eee Strain components

h Thickness of shell

L Length of shell

pf ’ '8 Linear differential operators
m, n Indices

Nxx’ Nee Stress resultants

p Transient pressure

po Peak overpressure

r(x) Weight function

t Time

td Duration of transient pressure
V, W Displacement components

x, 6 Coordinates

Qg Bn Separat%on constants

o Half apical angle

p Mass density of material

v Poisson's ratio

Wy W) Circular frequencies



INTRODUCTION

A theoretical study of the axisymmetric response of conical shells
to blast load is presented in this investigation. The shell is elastic and
homogeneous. Two partial differential equations which gdvern the displace-
ment components in normal and meridianal directions are derived. The
solutions are obtained by use of the technique of separation of variables.
The governing differential equations are essentially unseparable. To
overcome this difficulty, an approximation is made so that the equation of
motion for free vibration is satisfied to its mean value along a generator.
The results are expressed in series form.

Some progress has been made in the analytic treatment of the response
of cylindrical and spherical shells to blast load; it appears that very
limited work on the conical shell has been presented. The investigations
made by Bluhm [4],Herrmann and Mirsky [8] are good for conical shells with

small apical angle:.



FORMULATION OF THE PROBLEM

The axisymmetric response of a thin conical shell under blast load will
be formulated based upon elastic membrane shell theory. The meridianal
lines and parallel circles will be used as the coordinate system (x, 6)
as shown in Figure (1). The usual assumptions for thin shells, such as given
by Timoshenko [14], are used. Due to symmetry of loading and the geometry
of the structure, the displacement or motion is independent of coordinate 9.
Furthermore, no shears exist on the meridianal lines.

By summing forces in x and normal directions (Figure (1)), the equations

of motion are found to be

aN 2
xx , 1 _ 1 _ av
ax X Nux T % Nee = Ph Ty - by (1)
at
N 2
——06  _ aw _
X tan a ph at2 P (2)

where v:and w are respectively the components of displacements in the x and
normal directions. P, and p, are components of loading in the x and n direc-
tions. NXX and Nee are stress resultants in the x and circumferential

directions. p is the mass density of the material.

The stress, strain, and displacement relationships are

Qv
xx T ox (3a)
e = l(v - w cot a) (3b)
66 X



Figure 1.

Coordinate System and Symbols.




Eh :
Nex = 1 - v2 (exx * Ve66> - [;Q_ +y (v - weot a{] (4)
_ _Eh _ _Eh _r1 . _ Cav
Nog = 1= 42 (egg * ve,,) = T [x (v - woot a) +v ax] - (ap)

where € x and eee are components of strain in x and 6 directions, respectively.

E is the modulus of elasticity and v is the Poisson's ratio.
Substitution of Equations (4a) and (4b) into Equations (1) and (2) yields

the following governing differential equations:

2
N T Y. W V. Gl AU
2  x 0x ax 2 2 E 2 Eh
ox X X ot
2 2 p (1 -v%)
yov o v W oy a = el = v ) tan o Y tan « (5b)
x 0x 2 2 E 2 Eh
X X ot
The possible boundary conditions are as follows:
1. Closed Cone:
v(o, t) is finite
v(x2, t) = 0 1if supported at x = Xo
L - :| = ] =
ax (v w cot a) x=x 0 if free at x Xo
t=t
vix, o) = %% (x, o) = w(x, o) = g% (x, 0) = 0



Truncated Cone:

Case I. Supported in x-direction at both ends.

(a) With zero initial displacements and velocity

v(xl, t) = v(x2, t) = v(x, o) = g% (x, 6) = 0
wix, o) = M, 0) = 0 (6a)

(b) With initial displacements and zero initial velocity

qw

v, 1) = vl t) = FE (0 = ik, 0) = o0
v 0) = F(x), w(x, o) = G(x) (6b)

Case II. Supported in x=direction at x = Xy and free at x = X,

(a) With zero initial displacements and velocity

v . v _
o o (v — w cot a)] x=x, = 0
tE
v(xy, t) = g% (x, 0) = vi(x, o) = 0 (6¢)
w(x, o) = %% (x, 0) = 0

(b) With initial displacements and zero initial velocity

%ﬁ + i (v - w cot a)] x=x,, = 0
t:tl
Vixgy t) = S (x,0) = Wy, 0) = 0 (64)
v(x, o) = F(x)
w(x, 0) = G(x)



Since the shock wave front, in general, travels with very high speed, it
is reasonable to assume that the blast loading function varies with respect
to time only. The actual loading function is shown in Figure (2a). Since
the rise time tr is usually short, the relation between force and time may

be approximated by the following continuous functions:

t., -t/t
p = pll-)e /t
d
or
p = p (1 -t/t))

which are shown in Figure (2b). td is the duration of the load and P, is

the peak overpressure.
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Figure 2. Load-Time Relation.



ANALYSIS

For a simpler case, consider Poisson's ratio to be small and thus
negligible and the loading as normal to the surface. The governing differen-

tial Equations (5a) and (5b) then reduce to the following form:

2
Q—% T L 15 + WE cot a = £ Q‘% (7a)
dx X 8x X X E 0t
v w P P QEW
;5 - -)(—2 cot ¢ = - th tan g + 'E’ tan a at2 (7b)

The homogeneous solution, neglecting the forcing function, will be sought

first., By.adding Equations (7a) and (7b), we obtain

2 2 2
0v , lov _ B4V, g tan q &Y (8a)
6x2 x Ox E 6t2' E at2

Equations (8a) and the following equation will be used for seeking

homogeneous solutions:

2
ME - cota = " tana Q_g (8b)
X X E at

For possible separation of variables, the homogeneous solutions are

assumed in the following form:



Substitution of Equations (9) and (10) into Equation (8a) yields

o -
da’v av 2 2
<. 2n * i'dx?> g(t) = % vn Q_% * % tan a Wn Q_%
dx dt dt

For Equation (15) to be separable, we take
2
d7Vv dv
n l1_n 2P
— .____+ P —
2 * X dx Bn E Vn 0
dx
tanaW = -qgo V = =V
n n n
5, 2 o 2dk
2 n%h T % >
dt dt

(10)

(12)

(13)

where Bn and o are separation constants. a, is perfectly arbitrary since

we may take

_
gn 2
a
Ne
and
Vv = a2 v
n n n

Equation (10) is thus reduced to



n

ve = )L TG0 = ) v () g, (¢) (10a)
n=0

It is seen that the condition shown in Equation (13) will not satisfy
Equation (8b). This indicates that the governing differential Equations (8a)
and (8b) are essentially unseparable. To overcome this difficulty, Equation
(8b) may be replaced by an equivalent condition based on a physical point of
view. It is known that Equation (8b) represents the equation of motion of an
infinitesimal element of the shell in the normal direction. We write the
equation of motion for an element along the total length of a generator as

the condition equivalent to Equation (8b), i.e.

2 2 2
p 3
j 1 (v - wecota) dx = J = tan o <% dx (15)
X E 2
Xy X4 ot

2V (x) d°f 2

2 n _ n P
(g, + cot” a f ) I —dx = - — J Z x V_(x) dx (16)
xl dt Xy

We shall use the absolute values of the integrands to evaluate the

integrals shown in Equation (16). The integrals when divided by the length
of the shell, i, will be interpreted as the mean values of the functions

under the integrals. Equation (16) thus reduces to

2
gn(t) + cot™ a fn(t)

I
|
=)
]
)

10



where

e}
Jxl £ X Vn -sgn Vn dx
T = M (18)
2 v
I n sgn Vn dx
X, X

This approximation, Equations (15) through (18), will mean that Equation (8b)
is satisfied to its mean value along a generator.

Elimination of gn(t) between Equations (14) and (17) yields

2 4 2 2
5 d fn d fn 2 5 2 d fn _ d fn (19)
- cot™ «a 2 " Mh gz " Bn cot”™ «a fn - Bn ", "2 = >
dt dt dt dt
or
dz’fn d2fn
+ K (n, B) +H (g, B ) fy = O (20)
th n'in n dt2 n'in n
where
K = J“(coseCZ a + Bz ) (21a)
n qn n 1]l’l
Bi cot? a
H = —/————— (21b)
n n
n

The general solution of Equation (19) becomes

11



+h
I

A cos wt+B sinyt+C coswt+D sinuwt (22)

where
.
2 K, +"/(Kn) - 4 H)
Wy T 2 (2a)
and
2 K, - J(Kn)2 - 4 H
Qn = 5 (22b)

are two natural frequencies associated with each n. This fact has also
appeared in the discussions given by Baker [2] and Lamb [10] for spherical
shells.

gn(t) may be obtained by substituting Equation (22) into (17); we have
g (t) = (n w® —cot? ¢)(A cos w t +B sinw t)
n Tn *n n n n n

+ (qn Gi ~ cot? a)(én cos Tt + ﬁn sin §_t) (23)

It is seen that Equation (12) is the standard form for Bessel's equation

of zero order with solution

< P - P
v, = AJ (B, /% x) +BY (B /: x) (24)

n E

12




where Jn and Yn are Bessel's function of first and second kind, respectively.
If the shell forms a closed cone, @n must be zero since v should be
finite at x = 0. The eigenvalues Bn may be generated by applying the geometric

boundary condition at x = X

Case I. Supported condition, v(x2, t) = 0 from Equation (22)

/B _
JO(Bn E X2) - 0 (253)
and the roots are
P
Bn,J/E X2 = 2.405, 5.520 ..
- av - .
Case II. Free end condition % (x2,t) = 0 which leads to
e P _ £ _
JO&Bn“/ﬁE XZ) - —Jl(Bn V/; X2) =0 (25p)

and the roots are

Bn'\/g X2 = O’ 3.832, 7.016 ....

For a truncated conical shell, geometric boundary conditions listed in
Equation (6) will be applied to Equation (24) in order to determine Bn and

the ratio of A to é .
n n

13




Case I. The conditions v(xl,t) = v(x2,t) = 0 lead to the following

homogeneous algebraic equations:

=24

Jo(an“/—% xl) YO(Bn"/—% Xl) n
LJO(Bn "/_g XZ) Yo (Bn "/—% %2 n

= 0 (26)

oW

For non-trivial solutions, the determinant of the coefficient

matrix must vanish. Hence,

Jo(Bn“/—% Xl) YO(Bn"/_% Xl)

= (27)
P
Jo(Bn"/—% X2) Yo(Bn “/-E X2)
and
:Ag Yo(Bn“/—pE xl) _ Yo(’Bn“/-pE X2)
= = - = -
p
i Jo(Bn"/—E xl) Jo(Bn"/_% x2)
Case II. The conditions v(x2,t) = %; (&vt) = 0 result in
” p 1 p
ﬁg _ Yo(Bn"/—E X2) _ Yo(Bn"/’:E Xl)
B ~— -7 (28a)
" JO(BD’/_% x2) JO(Bn“/—p—l; Xl)
and
! _9_ ! P_
Jo(Bn“/_;E Xl) - Yo(Bn“/—E Xl) (28b)

P P
Jo(Bn\ % XZ) YO(BHJE X2)

14



The solutions of Equations (27) and (28) will give the eigenvalues B,
The first several roots of Equation (27) and (28) can be found in [1] or
[9]. 1t is a generally known fact that for large x, the Bessel functions
involved in the Equation (24) behave very much like trigonometric functions.

This phenomenon can be revealed from Equation (12).

2
d V 1 dV 2p B
2 b nE n 0 (29)
dx dx
By a change of variable of the form
Un = Vn~/x
Equation (16a) is transformed into
d2Un 2p 1
2 * (Bn E " —5) Un =0 (292)
dx X

If the values of x are large we may assume
pu 2L
X2 < Bn E

and neglect it in Equation (29a). The solution of Equation (29a) is seen to

be

j§ [An cos(Bn.Jfg x) + ﬁn sin(Bn V/% x)] (30)

15



The eigenvalues B, for the two cases shown in Equation (6) are

Case 1I. B = on V/E
=&2= 4 n y Vo (31a)
and
A _ /—E B _ ﬁ A .
AL = —tan(Bn 5 Xl) . -tan(Bn P X2) B (31b)
_ (en+ V) [E
Case I7. B, = o1 ; (31c)
and
Py _ —E- A _ E A
A= -tan(BnN/ 5 x2) B, = cot(Bn./ o xl) B, (31d)
where g = X, = X, . Equation (30) will be valid for truncated

conical shells.

Substitution of Equations (22) and (24) or (22) and (30) into Equations

(10a) and (9), the following general homogeneous solutions are obtained:

(o)

— , 2 2 .

VC = 2: Xn(x)[(qnun - cot cx)(An cos wnt + Bn sin unt)
n=0

+ (qnmi - cotza)(cn cos w t + D sin unt)] (32a)

and

16



(=]

W= Z = X () (A cos w t + B sinut +C cos G t+D sinit) (32b)
n:
where
- 2 [
X 00 = AT B Ex) 4 v BB L exact (32¢)

or

Xn(x) = N/'l? D‘n cos(Bn,,/-% x) + sin(BnJ_%' x)] ... approx (32d)
in which

A = R /}% (329)

The particular solutions will be sought next. Let éf =,Q— and

at
J3,::%; be the linear operators. By eliminating v between Equations (8a)

and (8b), the particular solution for w is taken as

"o T owt aﬁ‘l(xﬁ) ({1 - B0 + P, B

2
3 tan g p tang 293 p
p - X + C, log x +C (33)
Eh E2h @tZ} 1 2
where
jo) &f § io) 2 2 éfA
P%é(,Ij) = E(B tan a - cot a)fﬂ:;fﬁ-_ (E) tan ax i?(;f?f (34)



Substitution of Equation (33) into Equation (8b), we obtain the parti-

cular solution for v

X2 QLE 62W
v,o= oW cot a - & tan ap + ";~ tan a 5159 (35)

Cl and 62 will be determined by satisfying the geometric boundary

conditions for v at both ends of the shell.

The particular solutions are then expanded into the following series:

vp = 2: a_ Xn(x) (35a)
n=
and
w, = Z b cot @ X_(x) (35b)
n=0
where

fx2 T(x)V X, (x)dx
a = Xl (36a)
j 2 r(x)Xi(x)dx
X

jx2 r(x)Wan(x)dx
b = — (36b)
I 2 r(x)Xi(x)dx
*1

18



where r(x) is the weight function. It should be noted that a_ and b, the
generalized Fourier coefficients, are functions of t.
The final solutions of v and w are obtained by combining Equations (32a)

to  (35a) and (32b) to (35b), respectively. Or,

[e0]
w o= Z-cotax (x)(A_ cos w t +B_ sinw t
n n n n n
n=0
+C coswt+D sin t - bn) (37a)
and
v 2 2
v = Z X_(x)[n w- - cot® a)(A cos w t +B_sin w t)
n=
+ ( §2 - cot? a)(C_cos wt+D_ sina t) + a] (37b)
Th*n n n n n n

The following initial conditions will be used to determine the unknown

coefficients A, B, C, and D :
n’ "n’ 7R n

v(x,0) = g% (x,0) = w(x,0) = g% (x,0) = 0 (38)

By applying conditions listed in Equation (38) to Equations (37a)

and (37b), we obtain

-2 2
| - —bn(O)(qnwn2— co; a) - an(O) (399)
n,(wy = o)

19



b (0)(n " - cot’a) + a_(0)

Cn - 2 -2 (390)
f]n(“’n T Wy
ab da
- 200) (- wt®a) - =P(0)
B = (39c)
n v (w2 _ 62)
nM\¥n n
ab da
n 2
) 5¥—(O)(qun - cot”aq) +45¥—(O)
D = (39d)
n G (w2 _ —2)
nMn‘¥n = Wy

2L = I (40)

The response, after the shock wave has passed the structure, will be

o

w o= Z —cot @ X_(x)(A' cos w. t +B’ sin w t
n n n n n
n=0
L} - ! . —
+C cosu t+D sin wnt) (41a)
and
(o0
v = 2: X (x)[n w2 - cotza)(A' cos w.t + B! sin w_t)
n n'n n n n n
n=0
+ ( =2 cot2a)(C' cos .t +D’ sin w t)] (41b)
¥y n n n n

20




The unknown coefficients will be determined by using the known conditions

Vv
V(X,td)s g?(x;td): W(X,td) and g_‘g(x’td)

which are evaluated from Equations (37a) and (37b).

21



EXAMPLE

For illustrative purposes, an example for a truncated conical shell with
both ends supported is presented here. The boundary conditions shown in

Equation (6a) are thus used. The following data are considered:

Xy = 1.5 Xy @ = n/4

P o= p (1 - t/ty) (42)

The solutions of Equation (27) tabulated in [9] indicate that

where L = Xy = Xqe Therefore, the homogeneous solution shown in Equation
(32d) will be used.

The particular solutionsfor this case will be taken as

2

_ 3 x = -
wp = I (4_ + Cl log x + Cz)ﬁo(l - t/td) (43a)
and
3 N -
Vo = En (-1 ¥ 0 log x + Co)p (1 - t/tg) (430)
where
K2 - x2
e, = ——% (44a)
12 log R

22



and

X~ log x, - x2 log x
= 2 1 1 2
C, = » (44b)
1
12 lag ”
2

pa_(0) a_(0)
ot T T e, (452)
and
ab_(0) b _(0)
el I ;‘T (45b)

From Equation (18), we have

) . ngx . DEX
E J‘ x sin = sgn(sin } dx
o .
1

L
T 5<2 1 X ng X (4o2)
1l . omx . nEx
f L sin =y sgn(sin L ) dx
1

in which the integral involved in the denominator will be taken in the

following form:

9% ¢4 nn€2
2m-1_cos cos

E (o]
Jotanma - Fa® TS TS e
m=1 1 2

<23



The series shown in Equation (46b) converges rapidly and if only the first

term is considered, Equation (46a) is approximately equal to

5n1L %
T ~ n=1 (46¢)
2,V —=n__
6 (2n + j)
j=1
From Equations (21) and (22), we have
1 nx 2 E
K = =[2+ =
noong, [2 (z) P "n] (464)
1l //ng 2 E
Hn = T(&) ; (469
n
and
oh 2 +(m)° £ " 2+(M2E 2 2
- ——gen 3 1 bl L (m)E ()
2 o [ ‘ 2 L/ p ~
5 T T Tn
&
n

By use of Equations (32d), (36) and (43), the Fourier coefficients a and bn

become

Ly (2 - - .
a = = (1 - ) J (- %5 + Cl log x + 62) VX sin Q%l dx (47a)

R4



or

where

6p X 2

) . R X_ | = =\ jo .. DX
™ (1-td) J"x (%7 + T log x +G,) /x sin B gy (47b)
1
oh td o b, T2 L7/2Jx X 0g x sin ~y x¢: (48a
1
‘(quﬁ/z(l_;c_) 1y +62k +——El “2,1/2 in DEX 4 (48b)
Eh e {A n " 1R %n L7/2.[XX 09 x sin Ty X} 4
1
7/2

o
|

1

=@

. , .
f 2 x5/2 sintmt_x dix
1

7/2
(nL> ['(3%)5/2 cos 3nm + (2mt)5/2 cos 2nm
. ,
- L85_ {- V30m cos 3nm + #/2nm cos 2nw

+ /g— CWhn)- /g C Whn)} ]

! xl !

X
k = <l)3/2j : xl/2 sin &£ gy

<E> - #/3nm ¢os 3nm + ,/2nmt cos 2nrw

25



+ Z{ctén) - cWin)}]

in which C is the Fresnel's integral and is tabulated in [9]. Substituting
t = 0 into Equation (48) we have
) C C X
s oo5/2 P L 2,2 /2 . naix
a,(0) = 672 - S ANTE J"x x/“log x sin X ax]  (49a)
1
5/2 = =
p i C X
- ¢ o 1 2 1 2 1/2 . DIX
b (0) = 62 [4h“+:,2 kn+L7/2 Jx x“ log x sin &} dx] (49b)
1

The transient response is then determined by substituting Equations (44)

through (49) into Equation (39) and then (37). The response for t > ty can

readily be determined by use of Equation (41).

26



CONCLUDING REMARKS

The governing differential equations were made separable with approximation.
The natural frequencies Wn and mn corresponding to specific modes are therefore
not exact. It is of interest to note that there exists two natural frequencies
corresponding to each mode. This fact is true for the extensional vibration
for spherical shells as discussed in [2] and [10]. No exact solution or
experimental data seemed to bé_available at the present time in order to
evaluate the error, due to the approximation made in the analysis, involved
in the present solution. The method of solution presented in this study is
straightforward. However, the solutions expressed in series form appear to
be lengthy when numerical results are needed. High speed electronic computers
may be efficiently employed for this purpose. Since the response of one case
may look entirely different from the other case even for two identical shells,
if the durations of the load are different; hence, no numerical example is

presented in this paper.
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